链接: https://leetcode.cn/problems/ugly-number-ii/
题面
给你一个整数 n ,请你找出并返回第 n 个 丑数 。
丑数 就是只包含质因数 2、3 或 5 的正整数。
解法
这道题有两种不同的解法,比较容易想到是用一个优先队列
每次取出最小的数分别乘以2、3 和 5 再加入队列
直到取到第 n 个
还有一种dp的解法,这里贴一个在题解中看到的比较好的解释例如 n = 10, primes = [2, 3, 5]。 打印出丑数列表:1, 2, 3, 4, 5, 6, 8, 9, 10, 12
首先一定要知道,后面的丑数一定由前面的丑数乘以2,或者乘以3,或者乘以5得来。例如,8,9,10,12一定是1, 2, 3, 4, 5, 6乘以2,3,5三个质数中的某一个得到。
这样的话我们的解题思路就是:从第一个丑数开始,一个个数丑数,并确保数出来的丑数是递增的,直到数到第n个丑数,得到答案。那么问题就是如何递增地数丑数?
观察上面的例子,假如我们用1, 2, 3, 4, 5, 6去形成后面的丑数,我们可以将1, 2, 3, 4, 5, 6分别乘以2, 3, 5,这样得到一共6*3=18个新丑数。也就是说1, 2, 3, 4, 5, 6中的每一个丑数都有一次机会与2相乘,一次机会与3相乘,一次机会与5相乘,来得到更大的一个丑数。一共有18次机会形成18个新丑数。
这样就可以用三个指针,1
2
3pointer2, 指向1, 2, 3, 4, 5, 6中,还没使用乘2机会的丑数的位置。该指针的前一位已经使用完了乘以2的机会。
pointer3, 指向1, 2, 3, 4, 5, 6中,还没使用乘3机会的丑数的位置。该指针的前一位已经使用完了乘以3的机会。
pointer5, 指向1, 2, 3, 4, 5, 6中,还没使用乘5机会的丑数的位置。该指针的前一位已经使用完了乘以5的机会。
下一次寻找丑数时,则对这三个位置分别尝试使用一次乘2机会,乘3机会,乘5机会,看看哪个最小,最小的那个就是下一个丑数。最后,那个得到下一个丑数的指针位置加一,因为它对应的那次乘法使用完了。
这里需要注意下去重的问题,如果某次寻找丑数,找到了下一个丑数10,则pointer2和pointer5都需要加一,因为5乘2等于10, 2乘5也等于10,这样可以确保10只被数一次。
很巧妙的解法,同时也降低了时间复杂度,在后续更复杂的找丑数问题中也可以进行推广
题解中看到的解释:
官方题解里提到的三个指针p2,p3,p5,但是没有说明其含义,实际上pi的含义是有资格同i相乘的最小丑数的位置。这里资格指的是:如果一个丑数nums[pi]通过乘以i可以得到下一个丑数,那么这个丑数nums[pi]就永远失去了同i相乘的资格(没有必要再乘了),我们把pi++让nums[pi]指向下一个丑数即可。
不懂的话举例说明:
一开始,丑数只有{1},1可以同2,3,5相乘,取最小的1×2=2添加到丑数序列中。
现在丑数中有{1,2},在上一步中,1已经同2相乘过了,所以今后没必要再比较1×2了,我们说1失去了同2相乘的资格。
现在1有与3,5相乘的资格,2有与2,3,5相乘的资格,但是2×3和2×5是没必要比较的,因为有比它更小的1可以同3,5相乘,所以我们只需要比较1×3,1×5,2×2。
依此类推,每次我们都分别比较有资格同2,3,5相乘的最小丑数,选择最小的那个作为下一个丑数,假设选择到的这个丑数是同i(i=2,3,5)相乘得到的,所以它失去了同i相乘的资格,把对应的pi++,让pi指向下一个丑数即可。
代码
优先队列
1 | class Solution { |
动态规划
1 | class Solution { |